DRAFT Report on Carcinogens Substance Profile for

Cobalt–Tungsten Carbide: Powders and Hard Metals

Peer review — June 21-22, 2010 Board of Scientific Counselors Meeting

This DRAFT substance profile contains the NTP's preliminary recommendation on the listing status of <u>cobalt–tungsten carbide</u>: <u>powders and hard metals glass wool fibers</u> in the Report on Carcinogens, summarizes the scientific information that supports the recommendation, and provides information on use, exposure, and production as well as any existing federal regulations.

This draft is distributed solely for the purpose of public comment and predissemination peer review and should not be construed to represent final NTP determination or policy.

Additional information about the NTP Report on Carcinogens review process for candidate substances is available at http://ntp.niehs.nih.gov/go/29353.

Cobalt-Tungsten Carbide: Powders and Hard Metals

CAS No.: none assigned

Reasonably anticipated to be a human carcinogen

First listed in the *Twelfth Report on Carcinogens* (2010)

Also known as Co/WC, WC/Co

Carcinogenicity

Cobalt–tungsten carbide powders and hard metals are *reasonably anticipated to be human carcinogens* based on limited evidence of carcinogenicity from studies in humans and supporting studies on mechanisms of carcinogenesis.

Cancer Studies in Humans

Epidemiological studies provide evidence for the carcinogenicity of cobalt—tungsten carbide powders and hard metals based on (1) consistent findings of excess lung-cancer mortality among cobalt—tungsten carbide hard-metal manufacturing workers across studies, (2) higher risks among individuals with higher exposure levels, and (3) positive exposure-response relationships that cannot be explained by confounding with tobacco smoking. However, the epidemiological data are limited, because there are few studies of independent populations.

The published epidemiological literature consists of mortality studies of two independent multi-plant cohorts of cobalt-tungsten carbide hard-metal manufacturing workers, one in France (Moulin et al. 1998) and one in Sweden (Hogstedt and Alexandersson 1990), and cohort studies of two individual factories included in the French multi-plant cohort (Lasfargues et al. 1994, Wild et al. 2000). The French multiplant cohort included all 10 cobalt–tungsten carbide manufacturing plants in France; in addition, a nested case-control study of lung cancer was conducted within this cohort. The nested case-control study is most informative for evaluating cancer risk, because it used a semi-quantitative exposure scale to evaluate exposure-response relationships and considered potential confounding by exposure to tobacco smoking and other known or suspected occupational carcinogens. The cohort study of the largest French factory shares these advantages; however, because the workers were included in the multi-plant study, it does not provide independent evidence for carcinogenicity. In these two studies, four metrics of exposure were evaluated: (1) exposure level, which was the highest exposure score experienced during an individual's work history (on a scale of 0 to 9), (2) duration of exposure at a level of 2 or higher, (3) unweighted cumulative dose, which assigned the same level to occasional and full-time exposure, thus favoring peak exposure, and (4) frequency-weighted cumulative dose, which weighted exposure level by the frequency of exposure, thus reducing the effect of occasional exposure. The Swedish study, although limited in size, provides supporting information for an independent population.

Excess lung-cancer mortality (of approximately 30%) was found in both multi-plant cohort studies (Hogstedt and Alexandersson 1990, Moulin *et al.* 1998); risk estimates

were significantly higher among individuals with higher measures of exposure or longer time since first exposure (latency). In the nested case-control study (Moulin et al. 1998). lung cancer risk was significantly higher (odds ratio [OR] = 1.93, 95% CI = 1.03 to 3.62, 35 exposed cases) among workers exposed to cobalt–tungsten carbide (exposure level \geq 2) than among workers with little or no exposure (exposure level \leq 2). In exposureresponse analyses using workers in the lowest exposure category as the comparison group, lung-cancer risk was significantly higher (by up to fourfold) for workers in the highest categories of both measures of cumulative dose, and an elevated risk of borderline statistical significance was found for workers in the highest exposure-level category. Positive exposure-response relationships were observed for all four measures of exposure: duration ($P_{\text{trend}} = 0.03$), unweighted cumulative dose ($P_{\text{trend}} = 0.01$), frequencyweighted cumulative dose ($P_{\text{trend}} = 0.08$), and exposure level ($P_{\text{trend}} = 0.08$). Adjustment for tobacco smoking or exposure to known or suspected carcinogens did not change the results. The Swedish study had limited ability to evaluate exposure-response relationships because of small numbers of exposed workers with lung cancer. Nevertheless, the risk of lung cancer mortality was significantly increased for workers with exposure duration of over 10 years and latency of over 20 years (standardized mortality ratio [SMR] = 2.78, 95% CI = 1.11 to 5.72, 7 exposed cases). Analyses restricted to workers with at least 10 years' exposure or at least 20 years' latency found somewhat higher SMRs for "highexposed" than "low-exposed" workers (Hogstedt and Alexandersson 1990).

Excess risks of lung-cancer mortality were also found in studies of the two individual French factories. Wild *et al.* (2000) reported significantly elevated SMRs (by approximately twofold) for lung cancer among all male workers and among male workers ever employed in presintering workshops or with exposure levels of at least 2. The highest SMRs were observed for male workers in the highest exposure categories of all four exposure metrics (level, duration, and both measures of cumulative dose), although the trends were not statistically significant. In the study by Lasfargues *et al.* (1994), the entire cohort had a significantly increased risk of lung cancer, and the risk was highest among workers in the highest exposure-level category. Although small, this study provides supporting evidence that the findings for the French industry-wide cohort were not due solely to the results for the large factory studied by Wild *et al.*

Both the French multi-plant cohort study (Moulin *et al.* 1998) and the larger study of an individual French factory (Wild *et al.* 2000) found higher risks of lung cancer for exposure to cobalt—tungsten carbide before sintering than after sintering (see "Production"). The authors stated that exposure was highest during presintering processes; however, there is no evidence of toxicological differences between presintered and sintered materials, and both materials release similar amounts of cobalt ions (see "Studies on Mechanisms of Carcinogenesis").

It is unlikely that the excess risks of lung cancer found in the French studies were due to confounding by tobacco smoking or co-exposure to other known carcinogens. In the multi-plant study, the smoking-adjusted odds ratio for cobalt—tungsten carbide exposure (OR = 2.6, 95% CI = 1.16 to 5.82) was similar to the unadjusted risk (OR = 2.29, 95% CI = 1.08 to 4.88). Neither study found increased risks of smoking-related diseases, such as chronic bronchitis and emphysema, and adjustment for smoking or

exposure to other occupational carcinogens did not change the findings in the exposureresponse analyses (Moulin *et al.* 1998, Wild *et al.* 2000). Neither the Swedish multi-plant study (Hogstedt and Alexandersson 1990) nor the small French cohort study (Lasfargues *et al.* 1994) adjusted for smoking; however, surveys of smoking habits among a subset of workers found smoking rates similar to those in the general population. Overall, the studies are limited by the lack of quantitative exposure assessment; however, exposure misclassification would most likely reduce the likelihood of detecting a true effect.

Studies on Mechanisms of Carcinogenesis

The findings from epidemiological studies are supported by studies on mechanisms of carcinogenesis. Although the mechanism(s) by which by cobalt—tungsten carbide causes cancer have not been fully elucidated, it has been shown that (1) cobalt—tungsten carbide releases cobalt ions, (2) cobalt ions affect biochemical pathways related to carcinogenicity, (3) cobalt compounds are carcinogenic in experimental animals, (4) cobalt—tungsten carbide increases the production of reactive oxygen species (ROS) and causes greater cytotoxic, toxic, and genotoxic effects than does cobalt alone, (5) cobalt—tungsten carbide causes key events related to carcinogenesis, including genotoxicity, cytotoxicity, inflammation, and apoptosis (programmed cell death), and (6) the oxidative stress response resulting from increased ROS production may play a role in these key events and may also interfere with cells' ability to repair damage caused by cobalt—tungsten carbide. The combination of the effects from cobalt ions and the oxidative stress response from ROS production provide plausible modes of action for the carcinogenicity of cobalt—tungsten carbide.

Studies in biological fluids, *in vitro* systems, experimental animals, and humans have demonstrated that cobalt is rapidly solubilized from cobalt—tungsten carbide. Cobalt dissolution rates were similar for presintered and sintered cobalt—tungsten carbide incubated in various artificial biological fluids (Stopford *et al.* 2003). Cobalt was also released from hard-metal dust incubated with plasma and lung tissue (Edel *et al.* 1990). In experimental animals administered cobalt—tungsten carbide by intratracheal administration, cobalt was solubilized rapidly, cleared from the lung, distributed in the body, and excreted in the urine (reviewed by Lison 1996). Rats exposed intratracheally to cobalt—tungsten carbide had more cobalt in the urine than did rats administered cobalt alone, suggesting that tungsten carbide increases the bioavailability of cobalt (Lasfargues *et al.* 1992). Several biomonitoring studies detected elevated levels of cobalt in the urine, lungs, and other tissues of workers exposed to cobalt—tungsten carbide hard metals (Gallorini *et al.* 1994, Goldoni *et al.* 2004, Linnainmaa and Kiilunen 1997, Sabbioni *et al.* 1994a, Scansetti *et al.* 1998, Rizzato *et al.* 1986, Nicolaou *et al.* 1987).

Soluble cobalt compounds are genotoxic and carcinogenic in experimental animals. Cobalt sulfate is listed as *reasonably anticipated to be a human carcinogen* in the Report on Carcinogens based on sufficient evidence of carcinogenicity from studies in experimental animals. Specifically, inhalation exposure to cobalt sulfate in rodents caused lung tumors (adenoma or carcinoma) in mice and rats and adrenal-gland tumors (pheochromocytoma) in female rats (Bucher *et al.* 1999). Cobalt ions produce ROS, which cause oxidative DNA damage and act on a number of cancer-related molecular

targets. Cobalt ions disrupt cell-signaling pathways (Murata *et al.* 1999), inhibit DNA repair (Hartwig 2000, Hartwig *et al.* 2002), regulate genes involved in the response to hypoxia (Beyersmann 2002), replace or mimic essential divalent metal ions thus altering cellular reactions (Nackerdien *et al.* 1991, Beyersmann and Hartwig 1992, Kawanishi *et al.* 1994, Lloyd *et al.* 1998), and interfere with mechanisms involved in cell-cycle control and modulation of apoptosis (De Boeck *et al.* 2003a,b).

Numerous *in vitro* studies (reviewed in NTP 2009) and *in vivo* studies (Huaux *et al.* 1995, Lasfargues *et al.* 1995) have shown greater cytotoxic effects (measured primarily by lactate dehydrogenase release) for cobalt—tungsten carbide than for either cobalt powder or tungsten carbide alone. The mixture's greater *in vitro* toxicity to macrophages is not fully explained by greater bioavailability of cobalt (Lison and Lauwerys 1992, 1994). Respirable samples collected at various stages of the hard-metal manufacturing process (including powders for pressing, presintered materials, and powders from grinding of sintered materials) caused cytotoxicity and pathological changes in the lungs of rats after intratracheal injection (Adamis *et al.* 1997). In addition, cobalt—tungsten carbide causes a type of respiratory toxicity ("hard-metal disease") that is not observed with exposure to cobalt alone. Hard-metal disease is characterized by a giant-cell interstitial pneumonia that can develop into lung fibrosis (Lison 1996, Lison *et al.* 1996).

There is some evidence that the greater toxicity of cobalt—tungsten carbide may result from a physicochemical reaction that takes place at the interface between certain carbides and cobalt particles (Lison and Lauwerys 1992). The structural features of the two particles may help to explain the effects. Cobalt metal can reduce ambient oxygen, but only at a low rate of reaction because of the particles' surface characteristics. Tungsten carbide is inert and does not react with oxygen but is a good electron conductor. When cobalt and tungsten carbide particles are associated, the cobalt electrons are transferred to the carbide surface, allowing increased oxygen reduction and thus increased production of ROS. Biochemical studies on the production of ROS have shown that cobalt's capacity to generate hydroxyl radicals is greatly increased by association with tungsten carbide. Formation of the ROS results directly from the interaction of cobalt with tungsten carbide or indirectly from the cobalt ions generated from the Fenton-like reaction of the cobalt metal with the carbide (Lison and Lauwerys 1993, Lison *et al.* 1995).

Metal-induced generation of ROS in cellular test systems leads to oxidative stress as a result of increased free radicals and insufficient antioxidative defense. Protective mechanisms include cellular antioxidant systems, the stress-protein response, and the involvement of DNA excision and repair enzymes (Kasten *et al.* 1997, Shi *et al.* 2004, Lombaert *et al.* 2008). Fenoglio *et al.* (2008) studied oxidation of the antioxidant glutathione and cysteine sulfhydryl groups by cobalt–tungsten carbide dust–induced ROS and reported dust-concentration-dependent generation of thiyl radicals at particle surface sites. Depletion of cellular antioxidant defenses could further exacerbate cellular oxidative damage caused by ROS generated by cobalt–tungsten carbide particles.

Regulation of gene expression, including apoptotic, stress-protein, and immuneresponse pathways, also can be affected by ROS. Lombaert *et al.* (2008) evaluated the effects of cobalt–tungsten carbide exposure *in vitro* on patterns of gene expression in human peripheral-blood mononucleated cells and reported statistically significant upregulation of apoptosis and stress or defense response pathways and down-regulation of immune-response pathways.

Apoptosis has been associated with exposure to a number of metals that are either known carcinogens (arsenic, cadmium, chromium, nickel, beryllium) or possible carcinogens (cobalt, lead) (Pulido and Parrish 2003). Cobalt chloride has been shown to induce apoptosis through formation of ROS in both human alveolar macrophages and a rat pheochromocytoma cell line (PC12); co-administration of antioxidants suppressed ROS production and restored cell viability (Zou *et al.* 2001, Araya *et al.* 2002). Cobalt–tungsten carbide, tungsten carbide, and cobalt ions induced apoptosis in human lymphocytes; the effect of the mixture was significantly greater than that of tungsten carbide or cobalt alone (Lombaert *et al.* 2004).

Cobalt–tungsten carbide is genotoxic *in vitro* and causes mutations in the lungs of rats exposed *in vivo*. Its genotoxicity (clastogenic effects) may be caused by increased ROS production from the interaction between cobalt and tungsten carbide, from ionic cobalt, or from both. In addition, cobalt ions inhibit DNA repair, which may also contribute to cobalt–tungsten carbide's genotoxic effects. Specifically, cobalt–tungsten carbide caused DNA strand breaks in mouse 3T3 fibroblasts and human peripheral-blood lymphocytes (Anard et al. 1997) and micronucleus formation in human peripheral-blood lymphocytes (Van Goethem et al. 1997, De Boeck et al. 2003a). In these studies, cobalttungsten carbide was more genotoxic than cobalt alone. In rats exposed by intratracheal instillation, cobalt-tungsten carbide caused DNA damage and micronucleus formation in the lung (type II pneumocytes) (De Boeck et al. 2003c). In humans, neither DNA damage nor micronucleus formation was increased in lymphocytes of cobalt-tungsten carbide hard-metal workers, compared with unexposed workers; however, this study was limited by small sample size (De Boeck et al. 2000). Multiple regression analyses (Mateuca et al. 2005) indicated that both end points were associated with an interaction between tobacco smoking and exposure, and that micronucleus formation was associated with smoking, working in a cobalt-tungsten carbide plant, and having variant forms of genes coding for DNA repair enzymes (X-ray repair cross-complementing group 3 and 8-oxoguanine DNA glycosylase).

In addition, although the pathogenesis of hard-metal disease is not fully understood, it may involve differences in the susceptibility (genetic and/or health-related) of affected individuals to the toxic effects of increased ROS production due to cobalt—tungsten carbide exposure. Further, the mechanisms for fibrosing alveolitis and lung cancer in hard-metal workers may be related, conceivably involving oxidative damage and/or inflammatory events (IARC 2006).

Cancer Studies in Experimental Animals

No studies in experimental animals were identified that evaluated the relationship between cancer and exposure specifically to cobalt–tungsten carbide powders or hard metals.

Properties

This listing includes powders and dusts (either unsintered or sintered) containing both cobalt and tungsten carbide and hard metals containing both cobalt and tungsten carbide. Powders containing both cobalt and tungsten carbide may result from combination of these materials during manufacture of hard metals, and dusts containing both materials may result from production, finishing, or maintenance (e.g., sharpening or grinding) of cobalt—tungsten carbide hard-metal products. Cobalt—tungsten carbide hard metals are composites of tungsten carbide particles (either alone or in combination with smaller amounts of other carbides) with a metallic cobalt powder as a binder, pressed into a compact, solid form at high temperatures by a process known as "sintering." Cobalt—tungsten carbide hard metals are commonly referred to as "cemented carbides" in the United States, but the term "sintered carbide" also may be used, and some sources refer to cobalt—tungsten carbide products simply as "tungsten carbides" (Brookes 2002).

The physical properties of cobalt–tungsten carbide hard metals vary with the relative proportions of cobalt, tungsten carbide, and other carbides, but they have common properties of extreme hardness, abrasion resistance, and toughness. Tungsten carbide is hard (able to resist cutting, abrasion, penetration, bending, and stretching) but brittle; cobalt is soft but tough (able to withstand great strain without tearing or breaking). The composition of commercial-grade cobalt–tungsten carbide hard metals can vary greatly; it generally ranges from 50% to 97% tungsten carbide (along with other metallic carbides such as titanium carbide or tantalum carbide) and from 3% to 16% cobalt, with variations in grain size and additives. The proportion of cobalt as the binding metal in the composite hard metal depends on the intended use (Azom 2004). Cobalt–tungsten carbide hard metals for various uses have Vickers hardness values (a measure of the resistance of a substance to indentation by a diamond penetrator of special profile) typically ranging from 1250 to 1900 (Brookes 1998).

Mixtures of cobalt and tungsten carbide are more active than the individual components in adsorption of water vapor (with respect to both the amount adsorbed and the interaction energy) and in the catalytic decomposition of hydrogen peroxide (Zanetti and Fubini 1997). Physical and chemical properties of tungsten carbide and cobalt are listed in the following table.

Property	l ungsten carbide ^a	Cobalt ^b
Molecular or atomic weight	195.9	58.9
Density/specific gravity	15.6	8.92
Melting point	2,785°C	1,495°C
Boiling point	6,000°C	2,927°C
Vapor pressure	NA	1 Pa at 1,517°C (0.0075 mmHg)

Sources: ^aHSDB 2010a, ^bHSDB 2010b. NA = Not available.

Use

Approximately 70% of cobalt—tungsten carbide hard-metal production is used for cutting tools and 30% for wear-resistant materials, primarily for tools for mining and grinding operations (Kirk-Othmer 1997). Hard-metal grades for machining are assigned International Organization for Standardization (ISO) codes beginning with "P" for machining of steel, "M" for multiple purposes, including machining of steel, nickel-based superalloys, and ductile cast iron, and "K" for cutting of gray cast iron, nonferrous metals, and nonmetallic materials.

Production

Cobalt—tungsten carbide hard metals were developed in Germany during and after World War I and marketed commercially by a German company in 1927 as Widia, which consisted of tungsten carbide with 6% cobalt as binder (Brookes 1998, Upadhyaya 1998). Cobalt—tungsten carbide hard-metal manufacturing processes vary somewhat, but all involve production of cobalt and tungsten carbide powders, which are mixed, pressed into a compact, solid form, and heated to approximately 1,500°C — a process known as "sintering." The manufacturing process consists of three steps: Step 1, producing the cobalt and tungsten carbide powders; Step 2, mixing, drying, pressing, presintering, shaping the presintered hard metal, and sintering; and Step 3, finishing the sintered products.

Worldwide use of cemented carbides has increased steadily over the years, from about 10 tons in 1930 to 30,000 tons per year in the early 2000s (Azom 2004). In 2004, estimated U.S. production of hard-metal products totaled 5,527 metric tons (6,080 tons) (Hsu 2004). The United States Geological Survey (USGS 2008a,b) estimated that 792 metric tons (873 tons) of cobalt (9.3% of total U.S. cobalt consumption) and 6,610 metric tons (7,286 tons) of tungsten (56% of total U.S. tungsten consumption) were used in the production of cemented carbides in the United States in 2007. The Thomas Register (ThomasNet 2008) identified 127 U.S. and Canadian companies that produced or supplied cobalt–tungsten carbide and materials made from cobalt–tungsten carbide. In 2008, the Cemented Carbide Producers Association had 22 U.S. members or partner members (CCPA 2008). In 2007, the United States exported approximately 1.3 million kilograms (1,427 tons) and imported approximately 1.6 million kilograms (1,778 tons) of tungsten carbide (USITC 2008); no data specific to cobalt–tungsten carbide were found.

Exposure

The major source of exposure to cobalt—tungsten carbide powders and hard metals is occupational. However, people who live in the vicinity of hard-metal production or maintenance facilities could be exposed to cobalt—tungsten carbide hard-metal dusts. Although no exposure levels for the general public were found, some studies provided data on possible environmental contamination from the manufacture or maintenance of hard-metal products. Soil sampled from the rear of a cemented carbide tool-grinding plant contained cobalt at concentrations of up to 12,780 mg/kg (Abraham and Hunt 1995). The concentrations of tungsten and cobalt in airborne particulates in Fallon, NV

and four nearby towns were characterized by Sheppard *et al.* (2006), and the levels of tungsten (0.1 to 40.9 ng/m³) and cobalt (0.02 to 0.16 ng/m³) were reported to be higher in Fallon than in the other towns. Sheppard *et al.* suggested that a hard-metal facility located in Fallon could be a candidate source for the airborne exposure to the metals, although that suggestion has been disputed (NTP 2009).

Sources of occupational exposure to cobalt—tungsten carbide during the manufacture of hard metals include the Step 2 processes of mixing, drying, pressing, presintering, shaping, and sintering and Step 3 processes of grinding and sharpening sintered products. Exposure to cobalt—tungsten carbide hard metals can also occur from other miscellaneous manufacturing operations, during processing of hard-metal scrap for recycling, and during end use and maintenance of hard-metal tools. Cobalt and tungsten have been detected in workers' urine, blood, hair, toenails, and bronchoalveolar lavage fluid, and through open lung and transbronchial biopsy.

Step 2 processes, particularly powder-processing operations, generally are associated with the highest airborne exposures; several studies reported cobalt concentrations exceeding 5,000 $\mu g/m^3$ (NTP 2009). A maximum mean cobalt air concentration of 32,740 $\mu g/m^3$ (range = 44 to 438,000 $\mu g/m^3$) was reported during weighing and mixing operations in a U.S. manufacturing facility (Sprince *et al.* 1984). An Italian study reported a mean tungsten air concentration of 26 $\mu g/m^3$ (Sabbioni *et al.* 1994b), and a German study reported a maximum single measurement of 254 $\mu g/m^3$ (Kraus *et al.* 2001). Among workers involved in Step 2 manufacturing processes, cobalt was detected in the urine (at up to 2,100 $\mu g/L$), blood or serum (at up to 32 $\mu g/L$), and hair (at up to 25.8 ppm), and tungsten was detected in urine (at up to 169 $\mu g/L$).

Cobalt air concentrations reported for Step 3 processes (including tool finishing, grinding, and reconditioning operations) have generally been lower than those for Step 2, but have exceeded 1,000 μ g/m³ in some studies (NTP 2009). For Step 3 processes, a maximum mean cobalt air concentration of 1,292 μ g/m³ and a maximum single measurement of 2,440 μ g/m³ were reported; both concentrations were for dry-grinding operations. For tungsten in air, a maximum mean concentration of 5,160 μ g/m³ and a maximum single measurement of 12,800 μ g/m³ were reported. Among workers involved specifically in Step 3 processes, cobalt was detected in urine (at up to 730 μ g/L), blood (at up to 39 μ g/L), and hair (at up to 9.11 ppm). Tungsten also was detected in urine (up to 1,000 μ g/L) and blood (up to 60 μ g/L).

A few studies reported on exposure for jobs outside of the cobalt–tungsten carbide production process. McDermott (1971) reported airborne cobalt concentrations during packing operations (10 to $250 \,\mu\text{g/m}^3$), equipment cleaning (40 to $820 \,\mu\text{g/m}^3$), and miscellaneous operations (10 to $6,700 \,\mu\text{g/m}^3$), but the nature of these operations was not defined further. Maintenance activities (including housekeeping) were reported by Scansetti *et al.* (1985) to result in airborne cobalt concentrations exceeding $50 \,\mu\text{g/m}^3$, and Kraus *et al.* (2001) reported urinary levels associated with maintenance activities ranging from 1.3 to 4.7 $\,\mu\text{g/L}$ for cobalt and 1.5 to $5.3 \,\mu\text{g/L}$ for tungsten.

Information on exposure from end use of hard-metal tools is limited. Pellet *et al.* (1984, as cited in Angerer and Heinrich 1988) reported cobalt air concentrations of 180 to 193 µg/m³ and a mean urinary cobalt concentration of 11.7 µg/L associated with use of

hard metal; however, no additional information was provided for these data. No other information was found that directly demonstrated exposure to cobalt—tungsten carbide powders and hard metals by end users of products containing the material. The Washington State Department of Labor, in a Hazard Alert issued in March 1995, stated that there was no evidence of substantial exposure to cobalt during the use of tools containing tungsten carbide or other hard metals (WSDLI 1995).

Several studies found significant correlations between cobalt concentrations in air and in workers' blood or urine (Ichikawa *et al.* 1985, Scansetti *et al.* 1985, Lison *et al.* 1994, Sabbioni *et al.* 1994b). Urinary cobalt levels for hard-metal workers have been reported to increase through the workday (Torra *et al.* 2005) and workweek (Lison *et al.* 1994, Scansetti *et al.* 1998, Torra *et al.* 2005). In one study, urinary cobalt concentrations were significantly higher (P < 0.005) at the end of a shift than at the beginning of the shift, with significant increases "day in and day out" during the workweek (Torra *et al.* 2005).

Regulations

U.S. Environmental Protection Agency (EPA)

Clean Water Act

Tungsten and cobalt discharge limits are imposed for numerous processes during the production of tungsten or cobalt at secondary tungsten and cobalt facilities processing tungsten or tungsten carbide scrap raw materials.

Discharge limits for tungsten are imposed for numerous processes during the production of tungsten at primary tungsten facilities.

Discharge limits for cobalt are imposed for numerous processes during the production of cobalt at primary cobalt facilities.

Emergency Planning and Community Right-To-Know Act

Toxics Release Inventory: Cobalt and cobalt compounds are listed substances subject to reporting requirements.

Occupational Safety and Health Administration (OSHA)

Permissible exposure limits (PEL): for cemented tungsten carbide containing > 2% Co (as Co) = 0.1 mg/m³ (8-hour TWA); for cobalt metal, dust, and fume (as Co) = 0.1 mg/m³; for insoluble tungsten compounds (as W) = 5 mg/m³; for soluble tungsten compounds (as W) = 1 mg/m³.

Short-term exposure limits (STEL): for insoluble tungsten compounds (as W) = 10 mg/m^3 ; for soluble tungsten compounds (as W) = 3 mg/m^3 .

Guidelines

American Conference of Governmental Industrial Hygienists (ACGIH)

Threshold limit value – time-weighted average (TLV-TWA) for cobalt and inorganic cobalt compounds = 0.02 mg/m^3 ; for tungsten metal and insoluble compounds = 5 mg/m^3 .

Threshold limit value – short-term exposure limit (TLV-STEL) for tungsten metal and insoluble compounds = 10 mg/m^3 ; for soluble tungsten compounds = 3 mg/m^3 .

Biological exposure index (BEI): for cobalt in urine = 15 μ g/L end of shift at end of workweek; for cobalt in blood = 1 μ g/L end of shift at end of workweek.

National Institute for Occupational Safety and Health (NIOSH)

Recommended exposure limit (REL) (10-hour TWA): for cemented tungsten carbide containing > 2% Co (as Co) = 0.05 mg/m^3 ; for cobalt metal dust and fume (as Co) = 0.05 mg/m^3 ; for tungsten and insoluble tungsten compounds (as W) = 5 mg/m^3 ; for soluble tungsten compounds (as W) = 1 mg/m^3 .

Immediately dangerous to life and health (IDLH) limit for cobalt metal dust and fume (as $Co) = 20 \text{ mg/m}^3$.

Short-term exposure limit for tungsten and insoluble tungsten compounds (as W) = 10 mg/m^3 ; for soluble tungsten compounds (as W) = 3 mg/m^3 .

References

Abraham JL, Hunt A. 1995. Environmental contamination by cobalt in the vicinity of a cemented tungsten carbide tool grinding plant. *Environ Res* 69(1): 67-74.

Adamis Z, Tatrai E, Honma K, Karpati J, Ungvary G. 1997. A study on lung toxicity of respirable hard metal dusts in rats. *Ann Occup Hyg* 41(5): 515-526.

Anard D, Kirsch-Volders M, Elhajouji A, Belpaeme K, Lison D. 1997. *In vitro* genotoxic effects of hard metal particles assessed by alkaline single cell gel and elution assays. *Carcinogenesis* 18(1): 177-184.

Angerer J, Heinrich R. 1988. Chapter 20: Cobalt. In *Handbook on Toxicity of Inorganic Compounds*. Seiler HG, Sigel H, eds. New York: Marcel Dekker, Inc. p. 251-264.

Araya J, Maruyama M, Inoue A, Fujita T, Kawahara J, Sassa K, Hayashi R, Kawagishi Y, Yamashita N, Sugiyama E, Kobayashi M. 2002. Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages. *Am J Physiol Lung Cell Mol Physiol* 283(4): L849-L858.

Azom. 2004. Azom.com. http://www.azom.com. Last accessed: 9/13/04.

Beyersmann D, Hartwig A. 1992. The genetic toxicology of cobalt. *Toxicol Appl Pharmacol* 115(1): 137-145.

Beyersmann D. 2002. Effects of carcinogenic metals on gene expression. *Toxicol Lett* 127(1-3): 63-68.

Brookes K. 2002. Through the looking glass - the rather odd world of hardmetals. *Metal Powder Report* 57(5): 28-29.

Brookes KJA. 1998. *Hardmetals and Other Hard Materials* 3rd ed., East Barnet, Hertfordshire, UK: International Carbide Data. 220 pp.

Bucher JR, Hailey JR, Roycroft JR, Haseman JK, Sills RC, Grumbein SL, Mellick PW, Chou BJ. 1999. Inhalation toxicity and carcinogenicity studies of cobalt sulfate. *Toxicol Sci* 49(1): 56-67.

CCPA. 2008. *Cemented Carbide Producers Association - Members*. Cemented Carbide Producers Association. http://www.ccpa.org/pages/members.html. Last accessed: 10/6/08.

De Boeck M, Lardau S, Buchet JP, Kirsch-Volders M, Lison D. 2000. Absence of significant genotoxicity in lymphocytes and urine from workers exposed to moderate levels of cobalt-containing dust: a cross-sectional study. *Environ Mol Mutagen* 36(2): 151-160.

De Boeck M, Lombaert N, De Backer S, Finsy R, Lison D, Kirsch-Volders M. 2003a. *In vitro* genotoxic effects of different combinations of cobalt and metallic carbide particles. *Mutagenesis* 18(2): 177-186.

De Boeck M, Kirsch-Volders M, Lison D. 2003b. Cobalt and antimony: genotoxicity and carcinogenicity. *Mutat Res* 533(1-2): 135-152.

De Boeck M, Hoet P, Lombaert N, Nemery B, Kirsch-Volders M, Lison D. 2003c. *In vivo* genotoxicity of hard metal dust: induction of micronuclei in rat type II epithelial lung cells. *Carcinogenesis* 24(11): 1793-1800.

Edel J, Sabbioni E, Pietra R, Rossi A, Torre M, Rizzato G, Fraioli P. 1990. Trace metal lung disease: In vitro interaction of hard metals with human lung and plasma components. *Sci Total Environ* 95: 107-117.

Fenoglio I, Corazzari I, Francia C, Bodoardo S, Fubini B. 2008. The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress. *Free Radic Res* 42(8): 737-745.

Gallorini M, Edel J, Pietra R, Sabbioni E, Mosconi G. 1994. Cobalt speciation in urine of hard metal workers - a study carried out by nuclear and radioanalytical techniques. *Sci Total Environ* 150(1-3): 153-160.

Goldoni M, Catalani S, De Palma G, Manini P, Acampa O, Corradi M, Bergonzi R, Apostoli P, Mutti A. 2004. Exhaled breath condensate as a suitable matrix to assess lung dose and effects in workers. *Environ Health Perspect* 112(13): 1293-1298.

Hartwig A. 2000. Recent advances in metal carcinogenicity. *Pure Appl Chem* 72(6): 1007-1014.

Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Bürkle A. 2002. Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. *Environ Health Perspect* 110(Suppl 5): 797-799.

Hogstedt C, Alexandersson R. 1990. Dödsorsaker hos Hardmetallarbetare. *Arbete och Hälsa* 21: 1-26.

HSDB. 2010a. *Hazardous Substances Data Bank. Tungsten Carbide*. National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB and search on CAS number. Last accessed: 4/15/10.

HSDB. 2010b. *Hazardous Substances Data Bank. Cobalt*. National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB and search on CAS number. 4/15/10.

Hsu W. 2004. Dr. W. Y. Hsu, Kennametal, Inc., Latrobe, PA letter to Dr. C.W. Jameson, National Toxicology Program, Research Triangle Park, NC, July 16, 2004.

Huaux F, Lasfargues G, Lauwerys R, Lison D. 1995. Lung toxicity of hard metal particles and production of interleukin-1, tumor necrosis factor-alpha, fibronectin, and cystatin-c by lung phagocytes. *Toxicol Appl Pharmacol* 132(1): 53-62.

IARC. 2006. Cobalt in Hard-metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. vol. 86, Lyon, France: International Agency for Research on Cancer. pp. 37-155.

Ichikawa Y, Kusaka Y, Goto S. 1985. Biological monitoring of cobalt exposure, based on cobalt concentrations in blood and urine. *Int Arch Occup Environ Health* 55(4): 269-276.

Kasten U, Mullenders LH, Hartwig A. 1997. Cobalt(II) inhibits the incision and the polymerization step of nucleotide excision repair in human fibroblasts. *Mutat Res* 383(1): 81-89.

Kawanishi S, Inoue S, Yamamoto K. 1994. Active oxygen species in DNA damage induced by carcinogenic metal compounds. *Environ Health Perspect* 102 Suppl 3: 17-20.

Kirk-Othmer. 1997. *Kirk-Othmer Encyclopedia of Chemical Technology*, New York, NY: Jon Wiley and Sons.

Kraus T, Schramel P, Schaller KH, Zöbelein P, Weber A, Angerer J. 2001. Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds. *Occup Environ Med* 58(10): 631-634.

Lasfargues G, Wild P, Moulin JJ, Hammon B, Rosmorduc B, Rondeau du Noyer C, Lavandier M, Moline J. 1994. Lung cancer mortality in a French cohort of hard-metal workers. *Am J Ind Med* 26(5): 585-595.

Lasfargues G, Lardot C, Delos M, Lauwerys R, Lison D. 1995. The delayed lung responses to single and repeated intratracheal administration of pure cobalt and hard metal powder in the rat. *Environ Res* 69(2): 108-121.

Linnainmaa M, Kiilunen M. 1997. Urinary cobalt as a measure of exposure in the wet sharpening of hard metal and stellite blades. *Int Arch Occup Environ Health* 69(3): 193-200.

Lison D, Lauwerys R. 1992. Study of the mechanism responsible for the elective toxicity of tungsten carbide-cobalt powder toward macrophages. *Toxicol Lett* 60(2): 203-210.

Lison D, Lauwerys R. 1993. Evaluation of the role of reactive oxygen species in the interactive toxicity of carbide-cobalt mixtures on macrophages in culture. *Arch Toxicol* 67(5): 347-351.

Lison D, Buchet JP, Swennen B, Molders J, Lauwerys R. 1994. Biological monitoring of workers exposed to cobalt metal, salt, oxides, and hard metal dust. *Occup Environ Med* 51(7): 447-450.

Lison D, Lauwerys R. 1994. Cobalt bioavailability from hard metal particles: Further evidence that cobalt alone is not responsible for the toxicity of hard metal particles. *Arch Toxicol* 68(8): 528-531.

Lison D, Carbonnelle P, Mollo L, Lauwerys R, Fubini B. 1995. Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species. *Chem Res Toxicol* 8(4): 600-606.

Lison D. 1996. Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). *Crit Rev Toxicol* 26(6): 585-616.

Lison D, Lauwerys R, Demedts M, Nemery B. 1996. Experimental research into the pathogenesis of cobalt/hard metal lung disease. *Eur Respir J* 9(5): 1024-1028.

Lloyd DR, Carmichael PL, Phillips DH. 1998. Comparison of the formation of 8-hydroxy-2'-deoxyguanosine and single- and double-strand breaks in DNA mediated by Fenton reactions. *Chem Res Toxicol* 11(5): 420-427.

Lombaert N, De Boeck M, Decordier I, Cundari E, Lison D, Kirsch-Volders M. 2004. Evaluation of the apoptogenic potential of hard metal dust (WC-Co), tungsten carbide, and metallic cobalt. *Toxicol Lett* 154: 23-34.

Lombaert N, Lison D, Van Hummelen P, Kirsch-Volders M. 2008. In vitro expression of hard metal dust (WC-Co) - responsive genes in human peripheral blood mononucleated cells. *Toxicology and Applied Pharmacology* 227: 299-312.

Mateuca R, Aka PV, De Boeck M, Hauspie R, Kirsch-Volders M, Lison D. 2005. Influence of *hOGG1*, *XRCC1* and *XRCC3* genotypes on biomarkers of genotoxicity in workers exposed to cobalt or hard metal dusts. *Toxicol Lett* 156(2): 277-288.

McDermott FT. 1971. Dust in the cemented carbide industry. *Am Ind Hyg Assoc J* 32(3): 188-193.

Moulin JJ, Wild P, Romazini S, Lasfargues G, Peltier A, Bozec C, Deguerry P, Pellet F, Perdrix A. 1998. Lung cancer risk in hard-metal workers. *Am J Epidemiol* 148(3): 241-248.

Murata M, Gong P, Suzuki K, Koizumi S. 1999. Differential metal response and regulation of human heavy metal-inducible genes. *J Cell Physiol* 180(1): 105-113.

Nackerdien Z, Kasprzak KS, Rao G, Halliwell B, Dizdaroglu M. 1991. Nickel(II)- and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. *Cancer Res* 51(21): 5837-5842.

Nicolaou G, Pietra R, Sabbioni E, Mosconi G, Cassina G, Seghizzi P. 1987. Multielement determination of metals in biological specimens of hard metal workers: a study carried out by neutron activation analysis. *J Trace Elem Electrolytes Health Dis* 1(2): 73-77.

NTP. 2009. Report on Carcinogens Final Background Document for Cobalt-Tungsten Carbide Powders and Hard Metals. Research Triangle Park, NC: National Toxicology Program. 187 pp.

Pellet F, Perdrix A, Vincent M, Mallion JM. 1984. Biological levels of urinary cobalt. *Arch Mal Prof* 45: 81-85.

Pulido MD, Parrish AR. 2003. Metal-induced apoptosis: mechanisms. *Mutat Res* 533(1-2): 227-241.

Rizzato G, Lo Cicero S, Barberis M, Torre M, Pietra R, Sabbioni E. 1986. Trace of metal exposure in hard metal lung disease. *Chest* 90(1): 101-106.

Sabbioni E, Mosconi G, Minoia C, Seghizzi P. 1994a. The European Congress on cobalt and hard metal disease. Conclusions, highlights and need of future studies. *Sci Total Environ* 150(1-3): 263-270.

Sabbioni E, Minoia C, Pietra R, Mosconi G, Forni A, Scansetti G. 1994b. Metal determinations in biological specimens of diseased and non-diseased hard metal workers. *Sci Total Environ* 150(1-3): 41-54.

Scansetti G, Lamon S, Talarico S, Botta GC, Spinelli P, Sulotto F, Fantoni F. 1985. Urinary cobalt as a measure of exposure in the hard metal industry. *Int Arch Occup Environ Health* 57(1): 19-26.

Scansetti G, Botta GC, Spinelli P, Reviglione L, Ponzetti C. 1994. Absorption and excretion of cobalt in the hard metal industry. *Sci Total Environ* 150(1-3): 141-144.

Scansetti G, Maina G, Botta GC, Bambace P, Spinelli P. 1998. Exposure to cobalt and nickel in the hard-metal production industry. *Int Arch Occup Environ Health* 71(1): 60-63.

Sheppard PR, Ridenour G, Speakman RJ, Witten ML. 2006. Elevated tungsten and cobalt in airborne particulates in Fallon, Nevada: possible implications for the childhood leukemia cluster. *Appl Geochem* 21: 152-165.

Shi H, Hudson LG, Liu KJ. 2004. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. *Free Radic Biol Med* 37(5): 582-593.

Sprince NL, Chamberlin RI, Hales CA, Weber AL, Kazemi H. 1984. Respiratory disease in tungsten carbide production workers. *Chest* 86(4): 549-557.

Stopford W, Turner J, Cappellini D, Brock T. 2003. Bioaccessibility testing of cobalt compounds. *J Environ Monit* 5(4): 675-680.

ThomasNet. 2008. *Metals: Carbide*. Thomas Publishing. http://www.thomasregisterdirectory.com. Last accessed: 9/24/08.

Torra M, Fernández J, Rodamilans M, Navarro AM, Corbella J. 2005. Biological monitoring of cobalt exposure: results in a non-exposed population and on workers of a hard metal manufacture. *Trace Elem Electroly* 22(3): 174-177.

Upadhyaya GS. 1998. Classification and Applications of Cemented Carbides. In *Cemented Tungsten Carbides. Production, Properties, and Testing*. Westwood, NJ: Noyes Publications. pp. 288-293.

USGS. 2008a. *Mineral Industry Surveys: Cobalt in October, November and December 2007*. Reston, VA: U.S. Department of the Interior, U.S. Geological Survey. 12 pp. http://minerals.usgs.gov/minerals.

USGS. 2008b. *Mineral Industry Surveys: Tungsten in January 2008*. Reston, VA: U.S. Department of the Interior, U.S. Geological Survey. 6 pp. http://minerals.usgs.gov/minerals.

USITC. 2008. Subheading 284990: Carbides, Nesoi, Whether or Not Chemically Defined. International Trade Administration. U.S. Department of Commerce. http://dataweb.usitc.gov/scripts/user_set.asp (free registration required). Last accessed: 9/24/08.

Van Goethem F, Lison D, Kirsch-Volders M. 1997. Comparative evaluation of the in vitro micronucleus test and the alkaline single cell gel electrophoresis assay for the detection of DNA damaging agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt-tungsten carbide. *Mutat Res* 392(1-2): 31-43.

Wild P, Perdrix A, Romazini S, Moulin JJ, Pellet F. 2000. Lung cancer mortality in a site producing hard metals. *Occup Environ Med* 57(8): 568-573.

WSDLI. 1995. *Hard-metal workers face risks of cobalt, cadmium*. State of Washington Department of Labor and Industries.

http://www.lni.wa.gov/Safety/Basics/HazAlerts/951a.asp. Last accessed: 1/24/05.

Zanetti G, Fubini B. 1997. Surface interaction between metallic cobalt and tungsten carbide particles as a primary cause of hard metal lung disease. *J Mater Chem* 7(8): 1647-1654.

Zou W, Yan M, Xu W, Huo H, Sun L, Zheng Z, Liu X. 2001. Cobalt chloride induces PC12 cells apoptosis through reactive oxygen species and accompanied by AP-1 activation. *J Neurosci Res* 64(6): 646-653.